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Abstract— Machine learning provides a powerful tool for
building socially compliant robotic systems that go beyond
simple predictive models of human behavior. By observing
and understanding human interactions from past experiences,
learning can enable effective social navigation behaviors directly
from data. In this paper, our goal is to develop methods for
training policies for socially unobtrusive navigation, such that
robots can navigate among humans in ways that don’t disturb
human behavior. We introduce a definition for such behavior
based on the counterfactual perturbation of the human: if the
robot had not intruded into the space, would the human have
acted in the same way? By minimizing this counterfactual
perturbation, we can induce robots to behave in ways that
do not alter the natural behavior of humans in the shared
space. Instantiating this principle requires training policies to
minimize their effect on human behavior, and this in turn
requires data that allows us to model the behavior of humans
in the presence of robots. Therefore, our approach is based on
two key contributions. First, we collect a large dataset where an
indoor mobile robot interacts with human bystanders. Second,
we utilize this dataset to train policies that minimize coun-
terfactual perturbation. We provide supplementary videos and
make publicly available the largest-of-its-kind visual navigation
dataset on our project page1.

I. INTRODUCTION

Even the simplest forms of interaction between humans,
such as how to pass someone in a hallway, are governed
by complex non-verbal cues, and may be challenging to
script. In order for robots to inhabit the same environments
as people, they must also be cognizant of basic social cues
and etiquette, even for seemingly simple navigational tasks.
While a range of prior works have proposed approaches for
modeling human behavior [1, 2], the complexity of such
interactions often defies analytic modeling techniques.

We approach this challenge from a data-driven perspective:
acquiring policies for navigation around humans by leverag-
ing data of human-robot interactions to learn how to navigate
in socially unobtrusive ways. We propose a definition for
such behavior, which is based on the counterfactual pertur-
bation of humans. Specifically, we consider whether humans
would have acted in the same way if the robot had not
intruded into their space. By minimizing this counterfactual
perturbation, we can guide robots to behave in a manner that
does not alter the natural behavior of humans in the shared
space. To instantiate this principle, we train the SACSoN
(Scalable Autonomous Control for Social Navigation) policy
to minimize the impact on human behavior. This requires us
to both formalize the notion of counterfactual perturbation
into an objective, and to collect a dataset that has the kinds of
human-robot interactions that can allow our model to learn to
predict human behavior in the presence of robots. Thus, our
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Fig. 1: SACSoN is a socially unobtrusive vision-based naviga-
tion policy in the human-occupied spaces. We penalize coun-
terfactual perturbations (gray) from the intended human trajectory
(navy) and generate the compliant commands (orange).

work focuses on two complementary technical components:
the design of a policy learning method that can utilize
predictive models of humans for unobtrusive navigation, and
the collection of a large dataset of human-robot interactions
to train these predictive models.

To collect such a dataset, we propose a data collection sys-
tem, which we call HuRoN (Human-Robot interaction data
collection for vision-based Navigation) system. In contrast
to previous social navigation datasets that involve expensive
manual tele-operation [3, 4], or simple scripted policies
that fail to capture data diversity [5]. Instead, we devise
an intelligent system that can autonomously collect rich
interaction data with little-to-no human intervention, and can
improve its data collection policy over time as the ever-
growing dataset is reused to further train our policy. Due to
the page limitation, the details of HuRoN system is shown
in our project page.

Our work makes the following contributions: (i) a method
for learning a socially compliant SACSoN policy for visual
navigation around humans, (ii) an autonomous data collec-
tion system, HuRoN, that encourages rich interactions with
human pedestrians using a novel training objective, and (iii)
the HuRoN dataset, a large and diverse dataset comprising
over 4000 human-robot interactions of an autonomous robot
operating in a densely populated office-space environment.
Please see the project page for the dataset and videos.

II. RELATED WORK

Social navigation has been widely studied in the litera-
ture [6–8]. Model-based approaches based on the dynamic
pedestrian model have clasically been applied for behavior
modeling [1, 2, 9]. These methods determine the robot’s
actions in a virtual space with the predicted pedestrians’
behavior [10–17], considering social momentum [14], a max-
imum entropy model [13], a model predictive controller [15],
or a classical planner [16, 17]. Social navigation has also
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been viewed through the lens of model-free data-driven
learning such as reinforcement learning [18–22].

Our method using the pedestrians’ predictive model be-
longs to the former. However, different from prior works,
we apply the predictive model to estimate the counterfactual
perturbation from the intended pedestrians’ trajectory and
train the control policy by penalizing the perturbation on
offline. Hence our control policy enables the robot to navi-
gate to the target position while allowing the pedestrian to
walk as intended. Moreover, since our approach is end-to-end
learning, the robot actions can be derived from raw images
without detecting and predicting pedestrians in inference.

III. PRELIMINARIES

We propose a method and dataset for social compliant
robotic navigation with a learning-based approach. The de-
sign of our method extends ExAug [23], a control policy for
vision-based navigation that optimizes a goal-directed cost
function (but does not by itself consider interaction with
humans). This system can navigate to user-specified goal
images using a combination of a topological graph and a
learned low-level control policy, and its design is related to
a number of recent works on vision-based navigation with
learned policies and topological maps [23–28]. We build our
data collection system, HuRoN, on top of the same visual
navigation system.

The control policy in ExAug predicts control velocities
{vi, ωi}i=1...Ns

= πcϕ(It, Ig) from the current image It
and subgoal image Ig , and commands the linear velocity
v1 and the angular velocity ω1 to the robot to reach the
position of Ig , similar to receding horizon control. Here,
Ns is the control horizon and t is the current step number.
We commonly show the learnable parameters (e.g., ϕ) as a
subscript on the model function (e.g., πcϕ). The control policy
is paired with a topological memory that contains images as
nodes and temporal distance between them as the edges. The
ExAug control policy πcϕ is trained to minimize the objective

Jnav(ϕ) := Jpose(ϕ) + wcJcol(ϕ) + wrJreg(ϕ), (1)

where Jpose corresponds to the prediction error in the relative
pose estimates, Jcol penalizes collisions, and Jreg is a regular-
ization term for predicted velocities. ExAug uses a geomet-
ric and kinematics model to estimate the relevant states of the
robot in a virtual space and calculate these objectives, akin
to the model predictive control. These objectives enable us
to train the policy by minimizing the differentiable cost Jnav
without imitating the ground truth values. Please refer to the
original paper for implementation details of this system [23].
Overview: Section IV introduces our method to train the
SACSoN policy, which aims to enable robotic navigation
among humans with minimal disruption. In addition to Jnav,
we introduce two new objectives using the counterfactual
human trajectories. We pre-train the predictive model of the
pedestrians’ future trajectory to estimate the counterfactual
human trajectories in training.

IV. LEARNING A SOCIALLY COMPLIANT POLICY

We posit that a possible way to achieve “social compli-
ance” is for robots to avoid disrupting the intended behavior

Fig. 2: Our proposed objectives Jcp and Jps for training
SACSoN policy. Jcp penalizes the counterfactual perturbation from
the estimated intented pedestrian’s trajectory (left). Jps penalizes
the personal space violation in the future space (right).

of pedestrians, i.e., allow humans to carry on with their
activities without disruption. In our proposed method, we
penalize the counterfactual perturbation of the intended tra-
jectories of the pedestrians. We define the intended trajectory
of a pedestrian as the predicted trajectory of the pedestrian
from our predictive model conditioned on the robot being
stationary and non-intrusive. Our method aims to control
the robot so that the humans in the environment do not
act differently than they would have if the robot had been
stationary. This principle could be further generalized to
minimize the difference to other counterfactual situations,
such as ones where the robot is absent all together, but
we focus on the stationary robot counterfactual as a simple
instantiation of the principle. For safety, the complete design
of our full objective function also includes a term to penalize
the predicted distance between the human and the robot, to
encourage the robot to maintain clearance, as well as the
standard navigation terms described in the preceding section.
Thus, we add two terms to Jnav, forming our full objective:

min
θ

J(θ) := Jnav(θ) + wcpJcp(θ) + wpsJps(θ), (2)

where Jcp is an objective to suppress the counterfactual per-
turbation (Fig. 2 left) and Jps is an objective to penalize the
penetration of the personal space of the pedestrians (Fig. 2
right), where wcp and wps are weights for each objective.
Here, our control policy πθ predicts velocity commands
{vi, ωi} from It:t−Np

and Ig , defined as follows:

{vi, ωi}i=1...Ns
= πθ(It:t−Np

, Ig) (3)

Concatenating the past image frames gives the robot addi-
tional context that can be useful to avoid obstacles, detect
pedestrians in the environment, and reduce partial observ-
ability [29].
Jcp: To train the policies without distracting pedestrians, we
desgin Jcp using counterfactual pedestrians trajectories,

Jcp(θ) =
1

Ns

Ns∑
i=1

(ĥgwt+i − ĥt+i)
2, (4)

where ĥgwt+i is the estimated pedestrian’s 2D trajectory con-
ditioned on the the robot virtually stopping at the current
position to give way and ĥt+i is the estimated pedestrian’s
2D trajectory conditioned on the robot future action. By
minimizing Jcp with the other objectives to train our control
policy, the pedestrian can walk a path similar to what they
would have taken when the robot stopped and gave way,



while allowing the robot itself to move toward the goal
position. Here, we estimate ĥt+i as

ĥt+1:t+β = fψ(ht−α:t, rt−α:t, rt+1:t+β) (5)

where fψ is a trained predictive model of a pedestrian’s
future trajectory, conditioned on their past trajectory ht−α:t,
as well as the robot’s past trajectory rt−α:t and future
trajectory rt+1:t+β . All trajectories in Eqn. 5 are on the
current robot coordinate. The values for rt−α:t are obtained
from past wheel odometry, and rt+1:t+β is derived by
integrating the velocity commands {vi, ωi}i=1...Ns

from our
control policies. To obtain ht−α:t, we use YOLO [30, 31] and
DeepSORT [32] to detect and track pedestrians in the images
(processed into a panorama) from the recorded observations
of the robot [33], and project these detections in 3D using
the depth and scale estimates obtained from the ExAug
perception module [34].

For the other counterfactual trajectory, we input a
zero vector instead of rt+1:t+β to estimate ĥgwt+1:t+β as
fψ(ht−α:t, rt−α:t,0). Giving the zeros vector as the robot
future trajectory corresponds to stopping at the current pose.
Note that we only consider scenes involving a single pedes-
trian for simplicity; for scenes with multiple pedestrians, we
consider the nearest non-stationary pedestrians for training,
since they are most likely to interact with the robot. To obtain
an accurate predictive model fψ , we collect an interaction-
enriched dataset using the HuRoN system and train fψ before
training πθ.
Jps: We design Jps to encourage the robot to avoid the
personal space of the pedestrians.

Jps(θ) = mini{|rh + rr − c(di)|}, (6)

where rh is the personal space, rr is the robot radius, di is
the distance on 2D plane between the future pedestrians’
position ĥt+i and the future robot position rt+i, and c
is the function to limit di between 0 and rh + rr to
penalize the robot trajectories only penetrating the personal
space. Jps may be alternatively defined as the mean of the
set {|rh + rr − c(di)|}, but empirically, we found the min
formulation of Eqn. 6 to better capture the desired behavior.
Implementation details: Following ExAug [23], we set the
control horizon Ns = 8 and the past observations Np = 5
(see Eqn. 3). For pedestrian detection and tracking, we use
the spherical camera on the robot to allow detection and
interactions with pedestrians behind it. We use a batch size
of 80, with the training pair (past observations and subgoal
images) sampled from the same trajectory for one half of the
batch, and the pair coming from different trajectories in the
other half of the batch. We empirically set the weights wcp =
10.0, and wps = 100.0 for each objective, after analyzing
closed-loop navigation performance.

For training πθ, we pre-train fψ with α = Ns−1 and β =
Ns by minimizing the MSE loss using supervised learning
and frozen fψ while training πθ. We calculate the gradient
of πθ by back-propagation via fψ for updating πθ. To be
more accurate predictive model, we generate the human and
robot trajectories by social force model [1] and mix them
with our real data in the batch. One half of the batch is from

Fig. 3: HuRoN System overview. We design our autonomous
data collection platform around a vision-based navigation system
(gray) that uses a topological graph and a learned control policy.
Our proposed system has three key components: a help-and-rescue
module for collision recovery (orange), long-term anchors for
localization (blue), and continual learning (yellow).

Fig. 4: Example scenes from the HuRoN Dataset. We collected
our dataset in 5 different environments, spanning over 75 hours of
data collection and 4000 rich human interactions, containing raw
visual observations (cropped spherical images shown here).

our real dataset and the other half of the batch is from the
social force model. Please see our supplemental materials for
more information on the simulation data. Following [35], we
set the personal space rh as 0.45 and the robot radius rr as
0.25 including a small margin. All other hyperparameters are
replicated from ExAug [23].

V. AUTONOMOUS DATA COLLECTION SYSTEM

For our counterfactual objective to effectively supervise
the robot’s policy, we rely on the predictive model fψ to
make accurate predictions about hypothetical human-robot
interactions. This requires training fψ on a diverse dataset
that contains many interactions between pedestrians and our
robot. Therefore, the second major contribution of our work
is an autonomous data collection system that can collect
such a dataset. During collection, we wish to maximize
interactions between the robot and pedestrians, while also
maintaining autonomy, to collect high-quality data.

We propose the HuRoN system (Fig. 3) with the data
collection policy πρ to autonomously collect over 75 hours
of robot navigation data in 5 diverse human-occupied envi-
ronments, capturing over 4000 rich interactions with humans.
Due to the page limitation, We describes the key character-
istics of the collected dataset. Details of the HuRoN system
are shown in our project page.
Dataset Characteristics: We collected the HuRoN dataset
over the course of 24 days in 5 diverse environments, spread
across 3 university buildings. The dataset spans 75 hours
and 58 kilometers of autonomous robot navigation trajec-
tories, containing over 4000 interactions with humans. The
dataset includes visual observations (spherical and fisheye),
2D LiDAR scans, velocity information, and collision signals
from the bumper. Figure 4 shows example images of rich
human-robot interactions captured in our dataset.



To evaluate the efficacy of the proposed data collec-
tion system, our dataset contains two equal subsets: the
interaction-enriched dataset corresponding to data collected
by our collection policy πρ, and the naı̈ve dataset collected
without taking interaction. We have released this dataset
publicly on our project page.

VI. EVALUATION

We design our experiments to answer for the questions,
Q1 Does our proposed objectives Jcp and Jps lead to better
socially unobtrusive behavior? and Q2 Does our proposed
dataset lead to better control performance? The other detail
evaluations for our dataset are shown in our project page.

Towards answering Q1 and Q2, we train two different
policies with and without our proposed objectives Jcp and
Jps. Here, the control policy without Jcp and Jps corre-
sponds to the most relevant baseline method, ExAug [23].
In addition, we train different social navigation policy on
the naı̈ve dataset without enriched human-robot interactions.
We conduct fifteen experiments using the real robot in three
different real environments. The distance between the start
and goal positions ranges from 13.0 to 37.8 meters, which
is considered relatively long for vision-based navigation in
indoor settings. In order to ensure equivalent experimental
conditions, we request during the evaluation that the pedes-
trians navigate around the robot, creating similar interaction
scenarios for each control policy. If the robot collides with a
pedestrian or obstacle, we request the pedestrian to distance
themselves from the robot’s perimeter, and we allow the the
robot to continue navigation.

Table I presents the comparison of our method to the
above baselines along several metrics: Goal arrival Rate
(GR), Success weighted by Path Length (SPL) [36], Success
weighted by Time Length (STL) [37], Collision count for
Pedestrians (CP), Collision count for static Objects (CO), and
Personal Space Violation duration (PSV). Our control policy
trained on our proposed dataset with Jcp and Jps shows a
clear improvement over ExAug. In particular, our method
decreases the collision counts for pedestrians by more than
80%, reduces PSV by over 30%, and successfully leads the
robot to the goal position. The comparison suggests that our
proposed objective improves the robot’s ability to navigate
unobtrusively in the presence of humans, and our proposed
dataset collected via an interaction-seeking policy leads to
better performance for our method.

In Fig. 5, we qualitatively observe the robot’s behavior
to be significantly more “compliant” when trained with
the interaction-enriched dataset (left). Even in the narrow
corridors, our control policy makes space for the pedestrians
while still maintaining clearance from the walls. The control
policy trained on the naı̈ve dataset does not take avoidance
action when a pedestrian approaches the robot, so the robot
often violates personal space, collides with the pedestrian
(top right), or fails to reach the goal (bottom right).

VII. DISCUSSION

In this paper, we proposed a method for training the
SACSoN policy for vision-based navigation to build the
socially unobstrusive navigation system. In training SACSoN

Method Training dataset GR ↑ SPL ↑ STL ↑ CP ↓ [#] CO ↓ [#] PSV [s] ↓

ExAug [23] int.-enriched (ours) 0.800 0.692 0.595 20 6 85.248
Ours naı̈ve (baseline) 0.667 0.517 0.365 8 11 84.915
Ours int.-enriched (ours) 1.000 0.888 0.692 1 2 57.609

TABLE I: Closed-loop Evaluation of trained control policies.
We find a policy trained with the interaction-enriched dataset results
in less collisions and personal space violations for social navigation
and enables the robot to reach the goal position at higher accuracy.

Fig. 5: Qualitative Examples of Learned Behavior. A social
navigation policy trained on the interaction-enriched subset of
HuRoN (left) leads to better handling of human pedestrians while
successfully reaching the goal, without intruding in their personal
space. Training on the naı̈ve dataset results in a conservative policy
(right) that gets stuck and collides with pedestrian.

policy, we introduced novel objectives using the predictive
model of the pedestrians’ future trajectories to suppress
the counterfactual perturbation from the intended human
trajctories. To obtain an accurate predictive model for a
better SACSoN policy, we proposed the HuRoN system,
a scalable data collection system, to autonomously collect
a dataset with enriched human-robot interactions. We used
this data collection system to collect the HuRoN dataset:
the largest-of-its-kind publicly available dataset of visual
navigation around humans, spanning over 75 hours of data
collected in 5 different environments and comprising over
4000 rich human-robot interactions. Our experiments show
that policies trained on the collected dataset enables the real
robot to navigate with the socially unobtrusive behavior.

Our SACSoN policy trained on the dataset with enriched
human-robot interactions does have some limitations. Our
autonomous robot is restricted to operate at slow speeds
(capped at 0.4 m/s) to limit damage due to policy errors
in safety-critical environments with humans; however, this
inherently limits the robot behavior. When a pedestrian is
approaching the robot at a casual pace, even if the robot takes
actions to avoid the pedestrian, it may not be fast enough.
Additionally, our current system only learns simple social
interactions such as avoiding a pedestrian’s personal space
and giving way to the pedestrians; learning richer social
interactions will need better objectives incorporated more
tightly in the data collection and deployment policies.
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